Abstract
In HT29 colonic epithelial cells agonists such as carbachol (CCH) or ATP increase cytosolic Ca2+ activity ([Ca2+]i) in a biphasic manner. The first phase is caused by inositol 1,4,5-trisphophate-(Ins P3-) mediated Ca2+ release from their respective stores and the second plateau phase is mainly due to stimulated transmembraneous Ca2+ influx. The present study was undertaken to examine the effect of increased adenosine 3',5'-cyclic monophosphate (cAMP) (forskolin 10 micromol/l = FOR) on the Ca2+ transient in the presence of CCH (100 micromol/l). In unpaired experiments it was found that FOR induced a depolarization and reduced cytosolic Ca2+ ([Ca2+]i, measured as the fura-2 fluorescence ratio 340/380 nm) significantly. Dideoxyforskolin had no such effect. The effect of FOR was abolished when the cells were depolarized by a high-K+ solution. In further paired experiments utilizing video imaging in conjunction with whole-cell patch-clamp, [Ca2+]i was monitored separately for the patch-clamped cell and three to seven neighbouring cells. In the presence of CCH, FOR reduced [Ca2+]i uniformly from a fluorescence ratio (345/380) of 2.9 +/- 0.12 to 1.8 +/- 0.07 in the patch-clamped cell and its neighbours (n = 48) and depolarized the membrane voltage (Vm) of the patch-clamped cells significantly and reversibly from -54 +/- 7.4 to -27 +/- 5.9 mV (n = 6). In additional experiments Vm was depolarized by 15-54 mV by various increments in the bath K+ concentration. This led to corresponding reductions in [Ca2+]i. Irrespective of the cause of depolarization (high K+ or FOR) there was a significant correlation between the change in Vm and change in [Ca2+]i. These data indicate that the cAMP-mediated attenuation of Ca2+ influx is caused by the depolarization produced by this second messenger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.