Abstract

The absorption of sound in emulsions and suspensions is due to viscous and thermal transport processes occurring at the interface of the nonhomogeneities, as well as to the intrinsic absorption in the materials comprising the system. A complete description of these processes for systems of fluid particles suspended in fluid media was given by Epstein and Carhart [J. Acoust. Soc. Amer. 25, 553 (1953)]. However, subsequent investigators of liquid systems have generally neglected the thermal transport process. We show in this work that the Epstein-Carhart results provide a good description of our experimental attenuation data in emulsions, and that the thermal transport process can be the major factor in the attenuation. We have here also extended the theory further to include the attenuation in suspensions of solid particles, and good agreement is found between our theory and experimental results for aqueous suspensions of polystyrene spheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.