Abstract
The systematic laboratory investigation on tsunami attenuation by flexible mangrove models was performed in order to improve the knowledge on tsunami-coastal forest interaction. A sophisticated parameterization method, based on structural and bio-mechanical properties of a mature mangrove (Rhizophora sp.), was developed for the construction of the mangrove models under assumption of stiff and flexible structure. The forest model examined in the laboratory experiments consisted of the selected flexible mangrove models, arranged in different configurations, which was impacted by a tsunami-like solitary wave of varying height, propagating in different water depths. Based on the envelopes of max. wave height and wave forces induced on single tree models, wave evolution modes were determined to identify the source of wave attenuation. The results indicate the dependence of wave transmission on the observed wave evolution modes and relative forest width: the highest transmission coefficient is attributed to nonbreaking waves (ca. 0.78 and 0.55 for forest width of 0.75 and 3.0 m, respectively), while the lowest transmission coefficient corresponds to wave breaking in front of/in the forest model (ca. 0.5 and 0.3 for forest width of 0.75 and 3.0 m, respectively).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.