Abstract
Attenuation measurements were made near Limon, Colorado, where the Pierre shale is unusually uniform from depths of less than 100 ft to approximately 4,000 ft. Particle velocity wave forms were measured at distances up to 750 ft from explosive and mechanical sources. Explosives gave a well‐defined compressional pulse which was observed along vertical and horizontal travel paths. A weight dropped on the bottom of a borehole gave a horizontally‐traveling shear wave with vertical particle motion. In each case, signals from three‐component clusters of geophones rigidly clamped in boreholes were amplified by a calibrated, wide‐band system and recorded oscillographically. The frequency content of each wave form was obtained by Fourier analysis, and attenuation as a function of frequency was computed from these spectra. For vertically‐traveling compressional waves, an average of 6 determinations over the frequency range of 50–450 cps gives α=0.12 f. For horizontally‐traveling shear waves with vertical motion in the frequency range 20–125 cps, the results are expressed by α=1.0 f. In each case attenuation is expressed in decibels per 1,000 ft of travel and f is frequency in cps. These measurements indicate, therefore, that the Pierre shale does not behave as a visco‐elastic material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.