Abstract

The amplitude attenuation and phase dispersion for Love and Rayleigh waves in the period range 50 to 300 sec is determined from two earthquakes by digital techniques. A distribution of Q, or anelasticity, is determined for the upper mantle which satisfies the amplitude decay data for Love and Rayleigh waves and which is consistent with available body wave data. An argument is made for a longitudinal wave Q of about 2.4 to 2.6 times the Q for shear waves. This implies that very small losses are involved in pure compression compared to the losses in shear. This is an argument against the importance of certain mechanisms, such as thermoelastic losses, in the mantle. The Q for shear waves in the upper 400 km of the mantle seems to vary from about 50 to about 150. The Q for mantle Rayleigh waves is greater than the Q for mantle Love waves, both theoretically and experimentally. However, it is predicted that Q_R becomes less than Q_L at some period shorter than 50 sec, the crossover period being diagnostic of the thickness of the 'Q crust' or lithosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call