Abstract

Melanoma differentiation-associated gene 5 (MDA5) is an essential viral double-stranded RNA sensor to trigger antiviral immune responses, including type I interferon (IFN) induction. Aberrant activation of this viral sensor is known to cause autoimmune diseases designated as type I interferonopathies. However, the cell types responsible for these diseases and the molecular mechanisms behind their onset and development are still largely unknown. In this study, we revealed the attenuation of regulatory T cell (Treg) function by type I IFN signaling in a mouse model expressing a gain-of-function MDA5 G821S mutant. We found that experimental colitis induced by adoptive transfer of naïve T cells in Rag2−/− mice was rescued by simultaneous transfer of Tregs from wild-type but not from the MDA5 mutant mice. Type I IFN receptor deficiency in the MDA5 mutant mice recovered the suppressive function of MDA5 mutant Tregs. These results suggest that constitutive MDA5 and type I IFN signaling in Tregs decreases the suppressive function of Tregs, potentially contributing to the onset and exacerbation of autoimmune disorders in interferonopathies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.