Abstract

Ozone has potent oxidizing properties, and exposure to ozone causes airway hyper-responsiveness (AHR) and lung inflammation. We determined the importance of c-Jun NH(2) terminal kinase (JNK), a member of the mitogen-activated protein kinase pathway, in ozone-induced AHR and inflammation. SP600125 [anthra[1,9-cd] pyrazol-6 (2H)-one], a specific JNK inhibitor (30 mg/kg) or vehicle, was administered by intraperitoneal injection before and after ozone exposure (3 ppm for 3 h). SP600125 significantly reduced total cells, and neutrophils in bronchoalveolar fluid recovered at 20 to 24 h after exposure and inhibited ozone-induced AHR. Ozone exposure induced activation of JNK in the lung as measured by the expression of phosphorylated-c-Jun, an effect abolished by SP600125. Gene-microarray analysis revealed that ozone increased the expression of over 400 genes by more than 2-fold, including interleukin-6 (IL-6), CXCL1 (keratinocyte cytokine), and CCL2 (monocyte chemoattractant protein-1). SP600125 modulated the expression of a subset of 29 ozone-induced genes; IL-6 and CCL2 expression were further increased, whereas the expression of metallothionein 1, hemopexin, and mitogen-activated 3 kinase 6 was decreased in SP600125-treated ozone-exposed mice. Changes in mRNA for IL-6, CXCL1, and CCL2 were confirmed by real-time polymerase chain reaction. Ozone also decreased the expression of over 500 genes, with the most potent effect on angiopoietin-1. SP600125 modulated the expression of 15 of these genes, and in particular, SP600125 reversed ozone-induced decrease in expression of the redox-sensitive transcription factor, hypoxia-induced factor-1alpha. This study highlights an important role for JNK in response to oxidative stress through modulation of specific inflammatory and redox mediators. Inhibition of JNK with small molecule kinase inhibitors may be a means of reducing ozone-induced inflammation and AHR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.