Abstract
PurposeOsteoarthritis (OA) as a progressive destructive disease of articular cartilage is the most common joint disease characterized by reduction of joint cartilage thickness, demolition of cartilage surface and new bone formation. To overcome these problems, the purpose of the current research was to evaluate and compare the in vivo effects of synovial membrane-derived mesenchymal stem cell (SMMSCs), platelet-rich plasma (PRP) and conditioned medium (secretome) on collagenase II-induced rat knee osteoarthritis (KOA) remedy.MethodsFor the first step, SMMSCs were isolated and characterized. Also, secretome was collected from SMMSCs culture. Furthermore, PRP was collect from the rat heart venous blood. Second, two injection of collagenase II with an interval of 3 days was performed in the knee intra-articular space to induce osteoarthritis. Two weeks later, animals were randomly divided into 6 groups. Control group without treatment, positive group: taken an intra-articular sodium hyaluronate injection (0.1 ml), treatment groups taken an intra-articular injection of; treatment 1: SMMSCs (5 × 106), treatment 2: SMMSCs (5 × 106)/secretome (50 µl), treatment 3: SMMSCs (5 × 106)/PRP (50 µl), and treatment 4: SMMSCs (5 × 106)/ secretome (50 µl)/ PRP (50 µl). Three months later, rats were killed and the following assessments were executed: radiography, histopathology, and immunohistochemistry.ResultsOur findings represented that a combination of the SMMSCs/secretome/PRP had a considerable effect on glycosaminoglycans (GAGs) and collagen II contents, articular cartilage preservation, compared with other groups. In addition, combination of the SMMSCs with PRP and secretome showed the lowest expression of mmp3, while SOX9 had the highest expression in comparison with other groups. Also, SMMSCs-injected groups demonstrated better results compared with positive and control groups.ConclusionsInjecting a combination of the SMMSCs/secretome/PRP resulted in better efficacy in terms of joint space width, articular cartilage surface continuity and integrity, sub-chondral bone and ECM constituents such as collagen II. Indeed, transplantation of this combination could be considered as a preliminary therapy for clinical trial study in the future.
Highlights
Osteoarthritis (OA) as a polygenic disease is a debilitating, irreversible, degenerative, and severe joints disorder like in the hip, knee, and hand in humans
Injecting a combination of the synovial membrane-derived mesenchymal stem cell (SMMSCs)/secretome/platelet-rich plasma (PRP) resulted in better efficacy in terms of joint space width, articular cartilage surface continuity and integrity, sub-chondral bone and Extracellular matrix (ECM) constituents such as collagen II
This study demonstrated that intra-articular injection of SMMSC/secretome /PRP improves OA by enhancing cartilage regeneration
Summary
Osteoarthritis (OA) as a polygenic disease is a debilitating, irreversible, degenerative, and severe joints disorder like in the hip, knee, and hand in humans. An increasing number of experiments have shown that current procedures such as exercises, medications, physical therapy, and surgery have not been fully successful in treatment of KOA and prevention of damage to the joint tissue [7,8,9,10,11,12,13]. Knee joint replacement as a gold procedure to cure KOA is painful and expensive along with inflammation and bleeding. Taking all these problems and limitations into consideration, an outlook of therapy on future has been focused on stem cells and biological products [12, 14]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.