Abstract

To investigate whether the reduction of discoidin domain receptor 2 (DDR-2), a cell membrane tyrosine kinase receptor for native type II collagen, attenuates the progression of articular cartilage degeneration in mouse models of osteoarthritis (OA). Double-heterozygous (type XI collagen-deficient [Col11a1(+/-)] and Ddr2-deficient [Ddr2(+/-)]) mutant mice were generated. Knee joints of Ddr2(+/-) mice were subjected to microsurgical destabilization of the medial meniscus. Conditions of the articular cartilage from the knee joints of the double-heterozygous mutant and surgically treated mice were examined by histology, evaluated using a modified Mankin scoring system, and characterized by immunohistochemistry. The rate of progressive degeneration in knee joints was dramatically reduced in the double-heterozygous mutant mice compared with that in the type XI collagen-deficient mice. The progression in the double-heterozygous mutant mice was delayed by ∼6 months. Following surgical destabilization of the medial meniscus, the progressive degeneration toward OA was dramatically delayed in the Ddr2(+/-) mice compared with that in their wild-type littermates. The articular cartilage damage present in the knee joints of the mice was directly correlated with the expression profiles of DDR-2 and matrix metalloproteinase 13. Reduction of DDR-2 expression attenuates the articular cartilage degeneration of knee joints induced either by type XI collagen deficiency or by surgical destabilization of the medial meniscus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call