Abstract

Long-term success in lung transplantation is limited by obliterative bronchiolitis (OB), yet the mechanism for this disease is not well understood. Chemokine SDF-1 and its receptor, CXCR4, have been reported to be involved in several fibrogenic processes by recruiting inflammatory and fibroblast progenitor cells into injured tissues. We hypothesized that the SDF-1/CXCR4 axis also plays a role in the pathogenesis of OB. Using the mouse heterotopic allogeneic airway transplant model, we transplanted mouse tracheas from BALB/c donors into C57BL/6 recipients. At Day 10 after transplant, we found high expression of SDF-1 in cells in the sub-epithelial layers of the allograft. Approximately 26% of cells infiltrating the allograft were CD45(+)CXCR4(+), as determined by flow cytometry analysis. Treatment of the recipients with a CXCR4 antagonist, TN14003, decreased cell infiltration into the grafts at Day 10 post-implantation. At Day 42, a significant reduction in luminal occlusion was found in the TN14003-treated animals compared with controls (57.40% vs 98.21%, p < 0.01). To demonstrate the relevance of the SDF-1/CXCR4 axis in OB, sections of lung tissue obtained from lung transplant patients with OB were examined for SDF-1 and CXCR4 expression. We found a higher number of CXCR4- and SDF-1-positive cells in samples from patients with OB as compared with normal lungs. These findings provide new insights into the mechanisms of lung chronic rejection and may lead to new intervention tools for the treatment of OB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call