Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex aetiology and phenotypes. Phosphodiesterase-10A (PDE10A) inhibition has shown to provide benefits in various brain conditions. We investigated the role of a PDE10A inhibitor, papaverine on core phenotypes in prenatal-valproic acid (Pre-VPA) model of ASD. In order to identify probable mechanisms involved, the effects on several protein markers of neuronal function such as, neurogenesis-DCX, neuronal survival-BDNF, synaptic transmission-synapsin-IIa, neuronal transcription factor-pCREB, neuronal inflammation (IL-6, IL-10 and TNF-α) and neuronal oxidative stress (TBARS and GSH) were studied in frontal cortex, cerebellum, hippocampus and striatum. Pre-VPA induced impairments in social behaviour, presence of repetitive behaviour, hyper-locomotion, anxiety, and diminished nociception were studied in male Albino Wistar rats. Administration of papaverine to Pre-VPA animals resulted in improvements of social behaviour, corrected repetitive behaviour, anxiety, locomotor, and nociceptive changes. Also, papaverine resulted in a significant increase in the levels of BDNF, synapsin-IIa, DCX, pCREB, IL-10 and GSH along with significant decrease in TNF-α, IL-6 and TBARS in different brain areas of Pre-VPA group. Finally, high association between behavioural parameters and biochemical parameters was observed upon Pearson's correlation analysis. Papaverine, administration rectified core behavioural phenotype of ASD, possibly by altering protein markers associated with neuronal survival, neurogenesis, neuronal transcription factor, neuronal transmission, neuronal inflammation, and neuronal oxidative stress. Implicating PDE10A as a possible target for furthering our understanding of ASD phenotypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call