Abstract

Despite improving results, exocrine complications remain a major challenge in clinical pancreas transplantation. The etiology of posttransplantation pancreatitis relates almost certainly to cold ischemia/reperfusion-induced microvascular injury with an imbalance of vasoconstricting and vasodilating mediators due to endothelial dysfunction. We therefore studied the effectiveness of a nitric oxide donor on postischemic microvascular reperfusion injury after pancreas transplantation. Heterotopic isogeneic pancreaticoduodenal transplantation was performed in spontaneously breathing, chloralhydrate-anesthetized Sprague Dawley rats after 16 hr (n=5) of cold storage of the graft in 4 degrees C histidine-tryptophane-ketoglutarate solution. An additional five animals received L-arginine immediately before (50 mg/kg i.v.) and during the first 30 min of reperfusion (100 mg/kg i.v.). Five animals that did not undergo transplantation served as controls. Intravital fluorescence microscopy was used for analysis of functional capillary density, capillary diameters, and capillary red blood cell velocity in exocrine pancreatic tissue during 120 min of reperfusion. Histology served for quantitative assessment of inflammatory response (leukocytic tissue infiltration) and endothelial disintegration (edema formation). In L-arginine-treated animals, functional capillary density of exocrine tissue of pancreatic grafts was found slightly higher after 30 and 60 min, and significantly higher after 120 min of postischemic reperfusion compared with untreated pancreatic grafts. This was accompanied by a significant increase of capillary diameters. In parallel, pancreatic histology revealed significant attenuation of both leukocytic tissue infiltration and edema formation in the L-arginine-treated animals when compared with the nontreated controls. Besides reduction of leukocyte-dependent microvascular injury, L-arginine improves postischemic microvascular reperfusion, supposedly by capillary dilatation. Thus, our results suggest that supplement of nitric oxide during reperfusion is effective in attenuating exocrine microvascular reperfusion injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call