Abstract

The use of methyl tert-butyl ether (MTBE) as a gasoline additive has resulted in increasing pollution of groundwater. Most of the conventional treatment technologies are inefficient or costly when the initial concentration of MTBE is low (< 200 microg/L). To find an ecology friendly and inexpensive method for MTBE remediation, we used solar radiation with titanium dioxide (TiO2) as a photocatalyst. For synthetic samples, almost complete degradation (99+%) of MTBE was observed at the end of 5-hour test run with 0.05 g/L of slurry TiO2. Intermediate products detected were tertiary butyl formate, tertiary butyl alcohol, and trace amounts of acetone. Studies conducted using contaminated groundwater samples with TiO2 and sunlight showed that aromatic organic species benzene, toluene, ethylbenzene, and xylenes (BTEX) were degraded up to a factor of 10 times faster than MTBE. However, dissolved metals (Fe2+) and chloride ions in contaminated waters decreased the photo-activity of TiO2 for the degradation of MTBE. Reducing the pH of the groundwater samples increased the MTBE degradation rate threefold. Photocatalysis accelerates the solar degradation of MTBE and reduces its half-life by more than 3 orders of magnitude. The study indicated that solar degradation is a low-cost and effective alternative to attenuate MTBE in drinking water supplies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.