Abstract

Administration of methamphetamine (METH) to rats and nonhuman primates causes loss of terminals in the nigrostriatal dopaminergic system. The mechanism by which METH causes its neurotoxicity is not known. To evaluate further the role of oxyradicals in METH-induced neurotoxicity, we have tested its effects in CuZn superoxide dismutase (SOD) transgenic (Tg) mice, which express the human CuZnSOD gene. In non-Tg mice, acute METH administration causes significant decreases in levels of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the striata and cortices of non-Tg mice. In contrast, there were no significant decreases in cortical or striatal DA in the SOD-Tg mice. The effects of METH on DOPAC were also attenuated in both structures of these SOD-Tg mice. Chronic METH administration caused decreases in levels of striatal DA and DOPAC in the non-Tg mice, whereas the SOD-Tg mice were not affected. These results suggest that METH-induced dopaminergic toxicity in mice may be secondary to increased production of reactive oxygen species such as the superoxide radical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.