Abstract

Focal infusions of the succinate dehydrogenase inhibitor, malonate, into the substantia nigra pars compacta (SNc) of adult Sprague-Dawley rats resulted in a substantial depletion of ipsilateral striatal tyrosine hydroxylase (TH) activity. The percentage decrease in striatal TH activity following intranigral malonate (0.5 μmol/0.5 μl) infusion was similar at 4 (58%) and 7 days (62%) post-infusion. To assess the role of N-methyl- d-aspartate (NMDA) receptor activation in malonate neurotoxicity, animals were pretreated with the NMDA receptor antagonist MK-801 (2 × 5 mg/kg, i.p.). Four days post-infusion of malonate (0.5 μmol/0.5 μl) into the SNc, striatal TH activity was depleted by 58% in vehicle pretreated animals and 14% in the presence of MK-801 indicating a significant neuroprotective effect of MK-801 on malonate action. To determine the role of nitric oxide (NO) in malonate-induced nigral toxicity, the actions of malonate were evaluated in the presence of the nitric oxide synthase (NOS) inhibitors, 7-nitro indazole (7-NI) and N ω-nitro- l-arginine methyl ester ( l-NAME). Systemic injections of 7-NI (20, 30, 40, 50 and 75 mg/kg, i.p.) produced a dose-related inhibition of nigral NOS activity which was maximal at a dose of 40 mg/kg. Intranigral infusion of malonate with 20 and 50 mg/kg 7-NI pretreatment produced a 46 and 31% decrease in striatal TH activity, respectively. Thus, a significant protective effect at the higher but not lower dose of 7-NI was observed. Pretreatment with a l-NAME regimen (2 × 250 mg/kg; i.p.), previously shown to inhibit brain NOS activity by greater than 86%, also produced a significant neuroprotective effect against malonate-induced neurotoxicity (30% decrease). The results of this study suggest that malonate-induced toxicity to the dopaminergic neurons of the nigrostriatal pathway is mediated, at least in part, by NMDA receptor activation and the formation of NO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.