Abstract

To explore the role of angiotensin II Type 1 receptor-associated protein (ATRAP) in vascular remodeling, we developed transgenic mice for mouse ATRAP cDNA and examined remodeling after inflammatory vascular injury induced by polyethylene cuff placement. In ATRAP transgenic (ATRAP-Tg) mice, ATRAP mRNA was increased 3- to 4-fold in the heart, aorta, and femoral artery. ATRAP-Tg mice showed no significant change in body weight, systolic blood pressure, heart rate, and heart/body weight ratio. However, cell proliferation and neointimal formation in the injured artery were attenuated in ATRAP-Tg mice. The increase in NADPH oxidase activity and the expression of p22(phox), a reduced nicotinamide-adenine dinucleotide/reduced nicotinamide-adenine dinucleotide phosphate oxidase subunit, after cuff placement was also attenuated in ATRAP-Tg mice. Moreover, activation of extracellular signal-regulated kinase, signal transducer and activator of transcription 1, and signal transducer and activator of transcription 3 after cuff placement was significantly reduced in ATRAP-Tg mice. Pressor response and cardiac hypertrophy induced by angiotensin II infusion and pressure overload were also attenuated in ATRAP-Tg mice. These results suggest that ATRAP plays an important role in vascular remodeling as a negative regulator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call