Abstract

This study determined the effect of destruction of rostral ventrolateral medulla (RVLM)-C1 cells on integrated sympathetic and hormonal responses to hypotension or glucoprivation. Injection of anti-dopamine beta-hydroxylase-saporin into the RVLM resulted in 29-99% depletion of RVLM-C1 neurons and approximately 60% reduction in the number of A5 neurons. As in our previous study in unanesthetized rats, resting mean arterial pressure (MAP) was reduced by approximately 10 mmHg in rats with >80% depletion of RVLM-C1 cells compared with control rats, although resting heart rate (HR) did not differ significantly. In the present study, resting plasma levels of norepinephrine (NE) did not differ significantly between control rats and rats with >80% depletion of RVLM-C1 cells, although there was a tendency for RVLM-C1 lesioned rats to have lower levels. Also consistent with our previous study, hydralazine (HDZ)-evoked hypotension resulted in smaller increases in HR and plasma levels of NE in rats with >80% depletion of RVLM-C1 cells compared with control rats. Furthermore, the elevated plasma levels of posterior pituitary hormones vasopressin and oxytocin evoked by HDZ were blunted in RVLM-C1 lesioned rats compared with control rats, even though MAP fell to lower levels in the lesioned rats. Plasma renin activity, plasma osmolality, and plasma protein concentrations did not differ between control rats and rats with >80% depletion of RVLM-C1 neurons. In response to systemic administration of 2-deoxyglucose, the circulating level of epinephrine and the resulting hyperglycemia were attenuated in rats with >80% depletion of RVLM-C1 cells compared with control rats. These results demonstrate that RVLM-C1 cells, in addition to playing a role in acute cardiovascular reflexes, play an important role in integrated sympathetic and hormonal responses to homeostatic challenges such as hypotension and glucoprivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.