Abstract

The capacity of a hybrid constructed wetland (CW) system consisting of two vertical flow (VF) CWs working alternatively (3m2), one horizontal flow (HF) CW (2m2) and one surface flow (FWS) CW (2m2) in series to eliminate 13 emerging organic contaminants (EOCs) under three different hydraulic loading rates (HLRs) (0.06, 0.13 and 0.18m d−1 considering the area of the two VF beds) was studied through a continuous injection experiment. General toxicity, dioxin-like activity, antimicrobial activity and estrogenicity were also measured under the highest hydraulic loading rate. The hybrid system was highly efficient on the removal of total injected EOCs (except for antibiotics, 43±32%) at all three HLRs (87±10%). The removal efficiency in the hybrid CW system showed to decrease as the HLR increased for most compounds. The VF wetlands removed most of the injected EOCs more efficiently than the other two CWs, which was attributable to the predominant aerobic degradation pathways of the VF beds (70±21%). General toxicity was reduced up to 90% by the VF beds. Estrogenicity and dioxin-like activity were similarly reduced by the VF and the HF wetlands, whereas antimicrobial activity was mainly removed by the FWS wetland. Bearing this in mind, this injection study has demonstrated that the use of hybrid CW systems is a suitable wastewater technology for removing EOCs and toxicity even at high HLRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.