Abstract
Doxorubicin is an effective antineoplastic drug; however, its clinical benefit is limited by its cardiotoxicity. The inhibition of mitochondrial biogenesis is responsible for the pathogenesis of doxorubicin-induced cardiomyopathy. Endothelin-1 is a vasoconstrictive peptide produced from big endothelin-1 by endothelin-converting enzyme-1 (ECE-1) and a multifunctional peptide. Although plasma endothelin-1 levels are elevated in patients treated with doxorubicin, the effect of ECE-1 inhibition on doxorubicin-induced cardiomyopathy is not understood. Cardiomyopathy was induced by a single IP injection of doxorubicin (15 mg/kg). Five days after treatment, cardiac function, histological change, and mitochondrial biogenesis were assessed. Echocardiography revealed that cardiac systolic function was significantly deteriorated in doxorubicin-treated wild-type (ECE-1(+/+)) mice compared with ECE-1 heterozygous knockout (ECE-1(+/-)) mice. In histological analysis, cardiomyocyte size in ECE-1(+/-) mice was larger, and cardiomyocyte damage was less. In ECE-1(+/+) mice, tissue adenosine triphosphate content and mitochondrial superoxide dismutase were decreased, and reactive oxygen species generation was increased compared with ECE-1(+/-) mice. Cardiac mitochondrial deoxyribonucleic acid copy number and expressions of key regulators for mitochondrial biogenesis were decreased in ECE-1(+/+) mice. Cardiac cGMP content and serum atrial natriuretic peptide concentration were increased in ECE-1(+/-) mice. In conclusion, the inhibition of ECE-1 attenuated doxorubicin-induced cardiomyopathy by inhibiting the impairment of cardiac mitochondrial biogenesis. This was mainly induced by decreased endothelin-1 levels and an enhanced atrial natriuretic peptide-cGMP pathway. Thus, the inhibition of ECE-1 may be a new therapeutic strategy for doxorubicin-induced cardiomyopathy.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.