Abstract
Ethnopharmacological relevanceDiabetic nephropathy (DN) is an acute and serious diabetic complication characterized by renal hypertrophy and renal fibrosis with the expansion of extracellular matrices. Diabetic nephropathy has become a major cause of end-stage kidney disease. Sanziguben Granule (SZGB) is a compound prescription which has been widely applied in clinical medicine for the prevention and treatment of diabetic nephropathy as well as for acute and chronic kidney injuries. However, the mechanism of protective effects of SZGB in DN remains unclear. Materials and methodsIn this research, we investigated the effects of SZGB on renal interstitial fibrosis, antioxidant proficiency, and apoptosis in streptozotocin (STZ)-induced diabetic rats. Diabetic rats were prepared by performing a right uninephrectomy along with a single intraperitoneal injection of STZ. Rats were divided into six groups including sham, DN, SZGB-D, SZGB-Z, SZGB-G and fosinopril. SZGB and fosinopril were given to rats by gavage for 12 weeks. Samples from urine, blood and kidneys were collected for biochemical, histological, immunohistochemical and western blot analyses. ResultsWe found that rats treated with SZGB showed reduced 24-h urinary protein excretion along with reduced serum total cholesterol (TC) and triglyceride (TG) levels. SZGB was also shown to prevent the disruption of catalase activity and reduce serum urea, creatinine, and renal malondialdehyde while increasing glutathione levels. Moreover, SZGB administration markedly improved the expression levels of E-cadherin, 4-HNE, Nrf2, HO-1, and Bcl-2, while it decreased the expression levels of Vimentin, α-SMA and Cleaved caspase-3 in the kidneys of diabetic rats. The renoprotective effects of SZGB was believed to be mediated by its antioxidant capacity, and SZGB treatment attenuated renal fibrosis through stimulating the nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway in the diabetic kidneys. ConclusionsTherefore, it is suggested that SZGB can restrain epithelial-mesenchymal transition (EMT) through stimulating the Nrf2 pathway, which improves renal interstitial fibrosis in DN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.