Abstract

Abstract— A biochemical dosimeter was developed to study the attenuation of biologically effective UV radiation in marine tropical waters. Small quartz vials were used containing a solution of DNA molecules; the vials were incubated at discrete water depths. Subsequently, DNA damage was determined in these samples, using an antibody directed against thymine dimers followed by chemiluminescent detection. Measurements of DNA damage were compared with calculated biologically effective doses, as derived from spectroradiometer measurements. The biodosimeter was found to be a reliable and easy tool to determine levels of harmful UV radiation in marine waters. The highest attenuation coefficient (1.60 m-l) measured with the biochemical dosimeter was found in eutrophic waters, at a coastal station off Curabcao, Netherlands Antilles. At the other stations attenuation coefficients ranged from 0.18 m-1 in central Atlantic waters to 0.43 m-1 close to the Curapcao coast line. Latter results indicate that biologically effective UV radiation may easily reach ecologically significant depths, e.g. coral reef communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.