Abstract

Observations with RXTE have revealed kilohertz quasi-periodic brightness oscillations (QPOs) from nearly twenty different neutron-star low-mass X-ray binaries (LMXBs). These frequencies often appear as a pair of kilohertz QPOs in a given power density spectrum. In many models the higher-frequency of these QPOs is a beaming oscillation at the frequency of a nearly circular orbit at some radius near the neutron star. In such models it is expected that there will also be beaming oscillations at the stellar spin frequency and at overtones of the orbital frequency, but no strong QPOs have been detected at these frequencies. We therefore examine the processes that can attenuate beaming oscillations near neutron stars, and in doing so extend the work on this subject that was initiated by the discovery of lower-frequency QPOs from LMXBs. Among our main results are (1)in a spherical scattering cloud, all overtones of rotationally modulated beaming oscillations are attenuated strongly, not just the even harmonics, and (2)it is possible to have a relatively high-amplitude modulation near the star at, e.g., the stellar spin frequency, even if no peak at that frequency is detectable in a power density spectrum taken at infinity. We discuss the application of these results to modeling of kilohertz QPOs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call