Abstract

As the first-line antidepressant drugs, selective serotonin reuptake inhibitors (SSRIs) have efficacy in controlling the symptoms of depression. However, adverse events such as anxiety and hearing disorders were usually observed in patients and even healthy volunteers during the initial phase of SSRI administration. Hearing disorders, including auditory hallucination and tinnitus, are not only highly comorbid with mental disorders but also acknowledged factors that induce psychiatric disorders. The pharmacological and neural mechanisms underlying SSRI-induced anxiety and hearing disorders are not clear. In particularly, the methods evaluating hearing disorders are not well established in animal models, limiting the pre-clinical research on its mechanism. In the present study, we examined the mismatch negativity (MMN), a cognitive component of auditory event-related potential (ERP), to evaluate the hearing process of auditory cortex in mice. Under the acute administration of citalopram, a widely used SSRI, the anxiety-related behaviors and reduced MMN were observed in mice. Serotonin transporter (SERT) is a potential target of SSRIs. The anxiety-related behaviors and reduced MMN were also observed in SERT knockout mice, implying the role of SERT in anxiety and hearing disorders induced by SSRIs. Meanwhile, the auditory brainstem response and initial components of auditory ERP were kept intact in SERT knockout mice, suggesting that hearing neural pathway is less affected by serotonergic system. Our study suggests that the SERT deficient mice might represent a useful animal model in the investigation of the anxiety and hearing disorders during the SSRI treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call