Abstract

Alzheimer's disease (AD) is a common form of neurodegenerative disease in the elderly. Amyloid-β (Aβ)-associated neurotoxicity is an important component of the neurodegenerative change in AD. Recent studies have revealed a beneficial effect of anthocyanins in improving learning and memory in AD animal models. Using cultured HT22 mouse hippocampal neuronal cells as an in vitro model, we examined in this study the protective effect of ten pure components of anthocyanins against Aβ 42-induced cytotoxicity and also investigated the mechanism of their protective effects. We found that treatment of HT22 cells with the pure components of anthocyanins dose-dependently rescued Aβ 42-induced cytotoxicity, with slightly different potencies. Using petunidin as a representative compound, we found that it enhanced mitochondrial homeostasis and function in Aβ 42-treated HT22 cells. Mechanistically, petunidin facilitated β-catenin nuclear translocation and enhanced the interaction between β-catenin and TCF7, which subsequently upregulated mitochondrial homeostasis-related protein Mfn2, thereby promoting restoration of mitochondrial homeostasis and function in Aβ 42-treated HT22 cells. Together, these results reveal thatthe pure components of anthocyanins have a strong protective effect in HT22 cells against Aβ 42-induced cytotoxicity by ameliorating mitochondrial homeostasis and function in a β-catenin/TCF-dependent manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.