Abstract
Ferulate (4-hydroxy-3-methoxycinnamic acid) is a well-known phenolic compound that scavenges free radicals and exerts anti-inflammatory effects. Forkhead box O3a (FOXO3a), a transcription factor that plays important roles in aging processes, decreases with age and is negatively regulated through phosphorylation by phosphatidylinositol 3-kinase (PI3K)/Akt signaling. The present study investigated the efficacy of short-term ferulate feeding on age-related changes in PI3K/Akt/FOXO3a and upstream insulin signaling pathways in aged rats. In addition, changes in manganese superoxide dismutase (MnSOD) and catalase expression were examined because of their dependence on PI3K/Akt/FOXO3a activity. Short-term feeding experiments were done with a diet containing ferulate that was given to aged rats at doses of 3 or 6 mg kg(-1) day(-1) for 10 days. Results showed that FOXO3a activity was increased in the ferulate-fed old group compared with the control old group. Also, ferulate suppressed the PI3K/Akt signaling pathway that is responsible for FOXO3a inhibition in aged rats. Plasma insulin levels and the upstream insulin signaling pathway were also modulated by ferulate correspondingly with PI3K/Akt/FOXO3a activity. The age-related decrease in two major antioxidant enzymes, MnSOD and catalase, was blunted by ferulate, which was accompanied by FOXO3a transcriptional activity. The significance of the present study is the finding that short-term feeding of ferulate effectively modulates age-related renal FOXO3a, PI3K/Akt and insulin signaling pathways, and MnSOD and catalase expression, all of which may be beneficial for attenuating the aging process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.