Abstract

Data on transmission of neutrons in concrete generated by heavy ions of intermediate energies (of typically up to 1 GeV per nucleon) are of interest for shielding design of accelerators for use in both the research and in the medical field. The energy distributions of neutrons produced by ions of different species (from He to Xe) striking various targets at energies from 100 to 800 MeV per nucleon were recently measured by Kurosawa et al. in the angular range 0–90°. These spectra were used as input data for Monte Carlo simulations to determine source terms and attenuation lengths in ordinary concrete. The present paper presents calculations for 100 MeV/u helium ions on a Cu target, 100 MeV/u carbon ions on C, Al, Cu and Pb, 100 MeV/u neon ions on Cu and Pb, 400 MeV/u carbon ions on C, Al, Cu and Pb, 400 MeV/u neon ions on Cu, 400 MeV/u Ar ions on Cu, 400 MeV/u Fe ions on Cu and 400 MeV/u Xe ions on Cu. The results include the contributions of all secondaries. Some of the resulting attenuation curves are best fitted by a double-exponential function rather than the usual single-exponential. The effect of various approximations introduced in the simulations is discussed. A comparison is made with shielding data for protons scaled with the ion mass number. A comparison is also made with a simple analytical model in use at GANIL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.