Abstract

Attenuation correction (AC) using transmission scanning-like computed tomography (CT) is the standard method to increase the accuracy of cardiac single-photon emission computed tomography (SPECT) images. Recently developed dedicated cardiac SPECT do not support CT, and thus, scans on these systems are vulnerable to attenuation artifacts. This study presented a new method for generating an attenuation map directly from emission data by segmentation of precisely non-rigid registration extended cardiac-torso (XCAT)-digital phantom with cardiac SPECT images. In-house developed non-rigid registration algorithm automatically aligns the XCAT- phantom with cardiac SPECT image to precisely segment the contour of organs. Pre-defined attenuation coefficients for given photon energies were assigned to generate attenuation maps. The CT-based attenuation maps were used for validation with which cardiac SPECT/CT data of 38 patients were included. Segmental myocardial counts of a 17-segment model from these databases were compared based on the basis of the paired t-test. The mean, and standard deviation of the mean square error and structural similarity index measure of the female stress phase between the proposed attenuation maps and the CT attenuation maps were 6.99±1.23% and 92±2.0%, of the male stress were 6.87±3.8% and 96±1.0%. Proposed attenuation correction and computed tomography based attenuation correction average myocardial perfusion count was significantly higher than that in non-AC in the mid-inferior, mid-lateral, basal-inferior, and lateral regions (p<0.001). The proposed attenuation maps showed good agreement with the CT-based attenuation map. Therefore, it is feasible to enable AC for a dedicated cardiac SPECT or SPECT standalone scanners.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call