Abstract
AbstractThe high activity of water molecules induces notorious side reactions that seriously impair the stability of the Zn metal anode. Inspired by the mechanism of proton transfer in an aqueous solution, ectoine (ET) with a kosmotropic effect is first introduced into the typical aqueous electrolyte of aqueous zinc‐ion batteries (ZIBs). The hydrogen bond enhancement brought by the ET additive increases the energy barrier for the reconfiguration of hydrogen bonds, thereby impeding the hopping transport of protons based on the Grotthuss mechanism. The inhibited hydrogen evolution reaction (HER) by impeded proton transfer is strongly proved by in situ electrochemical gas chromatography (EC‐GC). The distinctive hydrogen bond enhancement effect of ET results in remarkably improved Zn anode stability while maintaining fast reaction kinetics. Consequently, the Zn//Zn symmetric cell delivers an ultra‐long cycle life of 5700 h 1 mA cm−2/1 mAh cm−2 and 2000 h at 5 mA cm−2/5 mAh cm−2 with lower voltage hysteresis, extending a cycling life by >27 and 24 times without sacrificing reaction kinetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.