Abstract
Abstract We propose to apply an incoherent dictionary learning algorithm for reducing random noise in seismic data. The image denoising algorithm based on incoherent dictionary learning is proposed for solving the problem of losing partial texture information using traditional image denoising methods. The noisy image is firstly divided into different image patches, and those patches are extracted for dictionary learning. Then, we introduce the incoherent dictionary learning technology to update the dictionary. Finally, sparse representation problem is solved to obtain sparse representation coefficients by sparse coding algorithm. The denoised data can be obtained by reconstructing the image using the sparse coefficients. Application of the incoherent dictionary learning method to seismic images presents successful performance and demonstrates its superiority to the state-of-the-art denoising methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.