Abstract
A person's age estimation from biological evidence is a crucial aspect of forensic investigations, aiding in victim identification and criminal profiling. In this study, we present a novel approach of utilizing Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy to predict the age of donors based on nail samples. A diverse dataset comprising nails from donors spanning different age groups was analyzed using ATR FT-IR, with subsequent multivariate analysis techniques used for age prediction. The developed partial least squares regression (PLS-R) model demonstrated promising accuracy in age estimation, with a root mean square error of prediction (RMSEP) equal to 11.1 during external validation. Additionally, a partial least squares discriminant analysis (PLS-DA) classification model achieved high accuracy of 88% in classifying donors into younger and older age groups during external validation. This proof-of-concept study highlights the potential of ATR FT-IR spectroscopy as a non-destructive and efficient tool for age estimation in forensic investigations, offering a new approach to forensic analysis with practical implications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.