Abstract

An alternative approach for the nondestructive, rapid and selective detection of gunshot residue (GSR) was investigated. A cloth substrate containing GSR particles expelled during a firearm discharge was used as an analog for the clothing of a shooting victim or a suspect discharging a firearm. An established and efficient procedure for GSR collection (tape lifting) was utilized to recover GSR particles from the cloth substrate. Microscopic-attenuated total reflectance (ATR) Fourier transform (FT) infrared (IR) spectroscopic imaging rapidly and automatically scanned large areas of the tape collection substrate and detected varying morphologies (microscopic and macroscopic) and chemical compositions (organic and inorganic) of GSR. The "spectroscopic fingerprint" of each GSR type provided unique virbrational modes, which were not characteristic of the tape collection substrate or the cloth debris which was also recovered. ATR images (maps) targeted the detection of these unique chemical markers over the mapped area. The hues of the ATR images were determined by the intensity of the signal for the chemical marker of each analyte. The spatial resolution of the technique was determined to be 4.7 μm. Therefore, all GSR particles sized 4.7 μm or larger will be resolved and detected on the tape substrate using micro-ATR imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.