Abstract

A novel detector for capillary electrophoresis (CE) using single-bounce attenuated total internal reflectance (ATR) Fourier transform infrared (FT-IR) microspectroscopy is presented. The terminus of the CE capillary is placed approximately 1 microm from the internal reflectance crystal at the focus of an ATR infrared microscope. Using pressure driven flow injection, concentration and volume detection limits have been determined for 25- and 10-microm-i.d. silica capillaries. Upon injection of 820 pL of succinylcholine chloride in a 10-microm capillary, a concentration detection limit of approximately 0.5 parts per thousand (ppt), or 410 pg, is found. The injection volume detection limit using a 108 ppt solution is 2.0 pL (216 pg). Sample separations using a programmed series of pressure, voltage, and again pressure on 25-, 50-, and 75-microm-i.d. capillaries are shown. CE separations of citrate and nitrate, as well as succinylcholine chloride with sodium salicylate using acetone as a neutral marker, are demonstrated. Several advantages of this CE-FT-IR technique include: (1) minimization of postcolumn broadening as a result of a small detector volume; (2) the ability to signal average spectra of the same aliquot, thereby improving the signal-to-noise in a stopped-flow environment; and (3) simplicity of design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call