Abstract

DNA vaccines are widely used to prevent and treat infectious diseases, cancer and autoimmune diseases; however, their relatively low immunogenicity is an obstacle to their use. In this study, we constructed a novel and universal DNA vaccine vector (pSS898) that can be used to build DNA vaccines against duck enteritis virus (DEV) and other viruses that require DNA vaccines to provide protection. This vaccine vector has many advantages, including innate immunogenicity, efficient nuclear trafficking and resistance to attack from nucleases. UL24 and tgB from DEV were chosen as the antigens, and the heat labile enterotoxin B subunit (LTB) from Escherichia coli and the IL-2 gene (DuIL-2) from duck were used as adjuvants for the construction of DNA vaccine plasmids. Ducklings that were orally immunized with S739 (Salmonella Typhimurium Δasd-66 Δcrp-24 Δcya-25) and harboring these DEV DNA vaccines produced strong mucosal and systemic immune responses, and they resisted an otherwise lethal DEV challenge. More importantly, S739 (UL24-LTB) provided 90% protection after a priming-boost immunization. This study shows that our novel and universal DNA vaccine vector can be used efficiently in practical applications and may provide a promising method of orally inoculating ducks with a DEV DNA vaccine delivered by attenuated Salmonella Typhimurium for prevention of DVE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.