Abstract

The tunneling magnetoresistance (TMR) ratio is investigated in a ferromagnet-metal-insulator-ferromagnet planar tunneling junction by use of the spin-polarized free-electron model. Due to the coherence multiple reflective scatterings within the metallic layer, the TMR ratio oscillates as the metallic thickness increases. Due to the same scatterings, not only electrons with the out-of-plane energy <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">xi</sub> close to the Fermi energy <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">EF</i> but also electrons with <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">xi</sub> below <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">EF</i> can tunnel sufficiently through the tunneling junction, which leads to the attenuated oscillation of the TMR ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.