Abstract

Accumulating evidence from clinical and experimental studies indicates that the incretin glucagon-like peptide-1 (GLP-1) elicits blood-pressure lowering effects via its diuretic, natriuretic and vasodilatory properties. The present study investigated whether acute infusion of GLP-1 induces diuresis and natriuresis in spontaneously hypertensive rats (SHRs). Additionally, we examined whether GLP-1 influences the vascular reactivity of the renal arteries of normotensive and hypertensive rats and elucidated the underlying mechanisms. We found that the increase in urinary output and urinary sodium excretion in response to systemic infusion of GLP-1 for 30min in SHRs was much less pronounced than in normotensive rats. The diuretic and natriuretic actions of GLP-1 in normotensive rats were accompanied by increases in GFR and RBF and a reduction in RVR through activation of the cAMP signaling pathway. However, no changes in renal hemodynamics were observed in SHRs. Similarly, GLP-1 induced an endothelium-independent relaxation effect in the renal arteries of normotensive rats, whereas the renal vasculature of SHRs was unresponsive to this vasodilator. The absence of a GLP-1-induced renal artery vasodilator effect in SHRs was associated with lower expression of the GLP-1 receptor, blunted GLP-1-induced increases in cAMP production and higher activity and expression of the GLP-1 inactivating enzyme dipeptidyl peptidase IV relative to the renal arteries of normotensive rats. Collectively, these results demonstrate that the renal acute responses to GLP-1 are attenuated in SHRs. Thus, chronic treatment with incretin-based agents may rely upon the upregulation of GLP-1/GLP-1 receptor signaling in the kidneys of hypertensive patients and experimental models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.