Abstract

Fat-cells were isolated from patients of body-mass indices (BMIs) ranging from 17.9 to 83.9 kg/m2. Isoprenaline-stimulated cyclic AMP accumulation in cells prepared from obese subjects as compared with normal-weight subjects, was less sensitive to inhibition by the adenosine agonist N6-(phenylisopropyl)adenosine (PIA) (P = 0.047). The inhibition of 7 beta-desacetyl-7 beta-[gamma-(N-methylpiperazino) butyryl]-forskolin-stimulated adenylate cyclase by PIA in the presence of adenosine deaminase was also much attenuated in crude plasma membranes of adipocytes prepared from massively obese patients as compared with lean controls (P = 0.0143). This difference was probably not due to different cell size, because adenylate cyclase of crude plasma membranes of large adipocytes was actually more sensitive to PIA than was adenylate cyclase of membranes of smaller fat-cells co-isolated from the same individual. The stimulatory effect of PIA on glucose uptake in the presence of adenosine deaminase was depressed in adipocytes prepared from obese subjects and correlated with BMI at r = -0.626 (P = 0.007) at 100 nM-PIA. The adenosine receptors were studied by using the adenosine antagonist 1,3-[3H]dipropyl-8-cyclopentylxanthine. The binding was rapid and proportional to protein concentration. There was no difference in the affinities of receptors in membranes of obese and normal-weight subjects; Kd values of all patients averaged 3.3 nM. Bmax values were 54 and 130 fmol/mg of protein in membranes prepared from seven obese and five control patients respectively. The Bmax values calculated per mg of protein correlated with BMI at r = -0.539 (P = 0.047). The adenosine content of adipose tissue was higher in obese than in control subjects. These results demonstrate an attenuated response of cyclic AMP accumulation, adenylate cyclase and glucose uptake to adenosine in fat-cells prepared from obese subjects, and suggest that this change is at least partly due to changes in the amount of adenosine receptors, but not their affinity. The decreased receptor number could be due to higher adenosine content. A higher adenosine concentration in adipose tissue could explain why lipolysis is inhibited in situ in obesity, and the desensitization could explain the diminished response to adenosine analogues in isolated fat-cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.