Abstract
Land-surface observation is easily affected by the light transmission and scattering of semi-transparent clouds, high or low, resulting in blurring and reduced contrast of ground objects. To improve the visual appearance of remote sensing images, the authors present a deep learning method for thin cloud removal using a new attentive generative adversarial network without prior knowledge or assumptions, which copes with thin clouds that are unevenly distributed on different images and learns the attention map with weighted information about spatial features. Such a spatial attention model can endow each pixel with the global spatial context information. Consequently, the generative network focuses on the thin cloud regions to generate better local image restoration, and the discriminative network can evaluate the local consistency of the repaired regions. The experimental results show that this method is superior to state-of-the-art methods in recovering detailed texture information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.