Abstract

Printed Circuit Boards (PCBs) are key devices for the modern-day electronic technologies. During the production of these boards, defects may occur. Several methods have been proposed to detect PCB defects. However, detecting significantly smaller and visually unrecognizable defects has been a long-standing challenge. The existing two-stage and multi-stage object detectors that use only one layer of the backbone, such as Resnet’s third layer (C4\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C_4$$\\end{document}) or fourth layer (C5\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C_5$$\\end{document}), suffer from low accuracy, and those that use multi-layer feature maps extractors, such as Feature Pyramid Network (FPN), incur higher computational cost. Founded by these challenges, we propose a robust, less computationally intensive, and plug-and-play Attentive Context and Semantic Enhancement Module (ACASEM) for two-stage and multi-stage detectors to enhance PCB defects detection. This module consists of two main parts, namely adaptable feature fusion and attention sub-modules. The proposed model, ACASEM, takes in feature maps from different layers of the backbone and fuses them in a way that enriches the resulting feature maps with more context and semantic information. We test our module with state-of-the-art two-stage object detectors, Faster R-CNN and Double-Head R-CNN, and with multi-stage Cascade R-CNN detector on DeepPCB and Augmented PCB Defect datasets. Empirical results demonstrate improvement in the accuracy of defect detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.