Abstract

COVID-19 clinical trial design is a critical task in developing therapeutics for the prevention and treatment of COVID-19. In this study, we apply a deep learning approach to extract eligibility criteria variables from COVID-19 trials to enable quantitative analysis of trial design and optimization. Specifically, we train attention-based bidirectional Long Short-Term Memory (Att-BiLSTM) models and use the optimal model to extract entities (i.e., variables) from the eligibility criteria of COVID-19 trials. We compare the performance of Att-BiLSTM with traditional ontology-based method. The result on a benchmark dataset shows that Att-BiLSTM outperforms the ontology model. Att-BiLSTM achieves a precision of 0.942, recall of 0.810, and F1 of 0.871, while the ontology model only achieves a precision of 0.715, recall of 0.659, and F1 of 0.686. The extracted variables can help characterize patient populations eligible for COVID-19 trials. Our analyses demonstrate that Att-BiLSTM is an effective approach for eligibility criteria parsing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call