Abstract

In the context of natural language processing, accuracy of intention detection is the basis for subsequent research on human-machine speech interaction. However, the problem of ambiguity in word vectors reduces the accuracy of intent detection. Meantime, there is a disconnection between local features and global features as well, resulting in text feature extraction that cannot fully reflect semantic information. These issues are all barriers of intention detection. Therefore, this paper proposes an attention-based convolutional neural network for self-media data learning (called A-CNN) for marketing intention. We cascade the traditional CNN with the self-attention model in the Attention networks to form a new network structure called A-CNN, and put forward a fast feature extraction method based on skip-gram-based learning called FSLText, to represent the high-dimension word vectors in the A-CNN. On the premise of maintaining the advantages of the CNN, A-CNN can not only solve the problem of local and global features disconnection caused by the CNN pooling layer, but also avoid the increase of algorithm complexity. The Self-Attention mechanism in the Attention model can effectively optimize the weight of local features of the information in global features, and retain local features that are more useful for intention detection. A fast feature extraction method which is based on Skip-gram can retain the semantic and word order information of the text. The method is beneficial to the marketing intention detection. According to the experiment, our A-CNN, compared with traditional machine learning methods, can improve 12.32% accuracy. Contrast to the dual-channel CNN, the accuracy rate is improved by 9.68%, and compared with the ATT-CNN, it is improved by 9.97%. On the F1 score, the A-CNN can improve the F1 score by about 9.37% in comparison with the traditional machine learning methods, the accuracy rate is increased by 9.68% compared with the dual-channel CNN, and 9.68% in contrast with ATT-CNN. It illustrates that our A-CNN can effectively address semantic and feature selection for marketing intention detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.