Abstract
Drug discovery (DD) research is aimed at the discovery of new medications. Solubility is an important physicochemical property in drug development. Active pharmaceutical ingredients (APIs) are essential substances for high drug efficacy. During DD research, aqueous solubility (AS) is a key physicochemical attribute required for API characterization. High-precision in silico solubility prediction reduces the experimental cost and time of drug development. Several artificial tools have been employed for solubility prediction using machine learning and deep learning techniques. This study aims to create different deep learning models that can predict the solubility of a wide range of molecules using the largest currently available solubility data set. Simplified molecular-input line-entry system (SMILES) strings were used as molecular representation, models developed using simple graph convolution, graph isomorphism network, graph attention network, and AttentiveFP network. Based on the performance of the models, the AttentiveFP-based network model was finally selected. The model was trained and tested on 9943 compounds. The model outperformed on 62 anticancer compounds with metric Pearson correlation R 2 and root-mean-square error values of 0.52 and 0.61, respectively. AS can be improved by graph algorithm improvement or more molecular properties addition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.