Abstract
NASA’s Solar Dynamics Observatory (SDO) mission gathers 1.4 terabytes of data each day from its geosynchronous orbit in space. SDO data includes images of the Sun captured at different wavelengths, with the primary scientific goal of understanding the dynamic processes governing the Sun. Recently, end-to-end optimized artificial neural networks (ANN) have shown great potential in performing image compression. ANN-based compression schemes have outperformed conventional hand-engineered algorithms for lossy and lossless image compression. We have designed an ad-hoc ANN-based image compression scheme to reduce the amount of data needed to be stored and retrieved on space missions studying solar dynamics. In this work, we propose an attention module to make use of both local and non-local attention mechanisms in an adversarially trained neural image compression network. We have also demonstrated the superior perceptual quality of this neural image compressor. Our proposed algorithm for compressing images downloaded from the SDO spacecraft performs better in rate-distortion tradeoff than the popular currently-in-use image compression codecs such as JPEG and JPEG2000. In addition we have shown that the proposed method outperforms state-of-the art lossy transform coding compression codec, i.e., BPG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.