Abstract

Background and objective:This paper introduces an encoder–decoder-based attentional decoder network to recognize small-size lesions in chest X-ray images. In the encoder-only network, small-size lesions disappear during the down-sampling steps or are indistinguishable in the low-resolution feature maps. To address these issues, the proposed network processes images in the encoder–decoder architecture similar to U-Net families and classifies lesions by globally pooling high-resolution feature maps. However, two challenging obstacles prohibit U-Net families from being extended to classification: (1) the up-sampling procedure consumes considerable resources, and (2) there needs to be an effective pooling approach for the high-resolution feature maps. Methods:Therefore, the proposed network employs a lightweight attentional decoder and harmonic magnitude transform. The attentional decoder up-samples the given features with the low-resolution features as the key and value while the high-resolution features as the query. Since multi-scaled features interact, up-sampled features embody global context at a high resolution, maintaining pathological locality. In addition, harmonic magnitude transform is devised for pooling high-resolution feature maps in the frequency domain. We borrow the shift theorem of the Fourier transform to preserve the translation invariant property and further reduce the parameters of the pooling layer by an efficient embedding strategy. Results:The proposed network achieves state-of-the-art classification performance on the three public chest X-ray datasets, such as NIH, CheXpert, and MIMIC-CXR. Conclusions:In conclusion, the proposed efficient encoder–decoder network recognizes small-size lesions well in chest X-ray images by efficiently up-sampling feature maps through an attentional decoder and processing high-resolution feature maps with harmonic magnitude transform. We open-source our implementation at https://github.com/Lab-LVM/ADNet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call