Abstract
Multiple instance learning (MIL) models have achieved remarkable success in analyzing whole slide images (WSIs) for disease classification problems. However, with regard to giga-pixel WSI classification problems, current MIL models are often incapable of differentiating a WSI with extremely small tumor lesions. This minute tumor-to-normal area ratio in a MIL bag inhibits the attention mechanism from properly weighting the areas corresponding to minor tumor lesions. To overcome this challenge, we propose salient instance inference MIL (SiiMIL), a weakly-supervised MIL model for WSI classification. We introduce a novel representation learning for histopathology images to identify representative normal keys. These keys facilitate the selection of salient instances within WSIs, forming bags with high tumor-to-normal ratios. Finally, an attention mechanism is employed for slide-level classification based on formed bags. Our results show that salient instance inference can improve the tumor-to-normal area ratio in the tumor WSIs. As a result, SiiMIL achieves 0.9225 AUC and 0.7551 recall on the Camelyon16 dataset, which outperforms the existing MIL models. In addition, SiiMIL can generate tumor-sensitive attention heatmaps that is more interpretable to pathologists than the widely used attention-based MIL method. Our experiments imply that SiiMIL can accurately identify tumor instances, which could only take up less than 1% of a WSI, so that the ratio of tumor to normal instances within a bag can increase by two to four times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.