Abstract
Cracks in concrete structures are one of the most important indicators of structural damage, and it is a necessity to detect and measure cracks for ensuring safety and integrity of concrete structures. The widely practised approach in inspecting the structures is by performing visual inspections followed by manual estimation of crack widths. This approach is not only time-consuming, laborious, and time-intensive but also prone to subjective errors and inefficient. To address these issues, we propose a novel deep learning framework for detecting cracks and then estimating crack widths in concrete surface images. Our framework handles both small- and large-sized images and provides a prediction of crack width at locations specified by the user. The proposed framework uses Attention Recurrent Residual U-Net (Attention R2U-Net) with Random Forest regressor to predict crack width with the mean prediction error of ±0.31 mm for crack widths varying from 0 to 8.95 mm and produces the lowest absolute maximum error of 1.3 mm. Our model has a coefficient of determination (R2) of 0.91, showing a non-linear mapping function with low prediction errors. We compare our model with a combination of four other segmentation models and regression models. Our proposed model has superior performance compared to other models, and one can easily adopt our framework to a variety of Structural Health Monitoring applications using Internet of Things sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.