Abstract

Hashing has wide applications in image retrieval at large scales due to being an efficient approach to approximate nearest neighbor calculation. It can squeeze complex high-dimensional arrays via binarization while maintaining the semantic properties of the original samples. Currently, most existing hashing methods always predetermine the stable length of hash code before training the model. It is inevitable for these methods to increase the computing time, as the code length converts, caused by the task requirements changing. A single hash code fails to reflect the semantic relevance. Toward solving these issues, we put forward an attention-oriented deep multi-task hash learning (ADMTH) method, in which multiple hash codes of varying length can be simultaneously learned. Compared with the existing methods, ADMTH is one of the first attempts to apply multi-task learning theory to the deep hashing framework to generate and explore multi-length hash codes. Meanwhile, it embeds the attention mechanism in the backbone network to further extract discriminative information. We utilize two common available large-scale datasets, proving its effectiveness. The proposed method substantially improves retrieval efficiency and assures the image characterizing quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.