Abstract

In this paper, we propose a novel filtering method based on deep attention networks for the quality enhancement of light field (LF) images captured by plenoptic cameras and compressed using the High Efficiency Video Coding (HEVC) standard. The proposed architecture was built using efficient complex processing blocks and novel attention-based residual blocks. The network takes advantage of the macro-pixel (MP) structure, specific to LF images, and processes each reconstructed MP in the luminance (Y) channel. The input patch is represented as a tensor that collects, from an MP neighbourhood, four Epipolar Plane Images (EPIs) at four different angles. The experimental results on a common LF image database showed high improvements over HEVC in terms of the structural similarity index (SSIM), with an average Y-Bjøntegaard Delta (BD)-rate savings of and an average Y-BD-PSNR improvement of dB. Increased performance was achieved when the HEVC built-in filtering methods were skipped. The visual results illustrate that the enhanced image contains sharper edges and more texture details. The ablation study provides two robust solutions to reduce the inference time by and the network complexity by . The results demonstrate the potential of attention networks for the quality enhancement of LF images encoded by HEVC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.