Abstract
This paper presents a classification model for eye diseases utilizing attention mechanisms to learn features from fundus images and structures. The study focuses on diagnosing glaucoma by extracting retinal vessels and the optic disc from fundus images using a ResU-Net-based segmentation model and Hough Circle Transform, respectively. The extracted structures and preprocessed images were inputted into a CNN-based multi-input model for training. Comparative evaluations demonstrated that our model outperformed other research models in classifying glaucoma, even with a smaller dataset. Ablation studies confirmed that using attention mechanisms to learn fundus structures significantly enhanced performance. The study also highlighted the challenges in normal case classification due to potential feature degradation during structure extraction. Future research will focus on incorporating additional fundus structures such as the macula, refining extraction algorithms, and expanding the types of classified eye diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.