Abstract

Objective: Decoding auditory attention from brain signals is essential for the development of neuro-steered hearing aids. This study aims to overcome the challenges of extracting discriminative feature representations from electroencephalography (EEG) signals for auditory attention detection (AAD) tasks, particularly focusing on the intrinsic relationships between different EEG channels. Approach: We propose a novel attention-guided graph structure learning network, AGSLnet, which leverages potential relationships between EEG channels to improve AAD performance. Specifically, AGSLnet is designed to dynamically capture latent relationships between channels and construct a graph structure of EEG signals. Main result: We evaluated AGSLnet on two publicly available AAD datasets and demonstrated its superiority and robustness over state-of-the-art models. Visualization of the graph structure trained by AGSLnet supports previous neuroscience findings, enhancing our understanding of the underlying neural mechanisms. Significance: This study presents a novel approach for examining brain functional connections, improving AAD performance in low-latency settings, and supporting the development of neuro-steered hearing aids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.