Abstract

Object detection is a computer vision task that involves localisation and classification of objects in an image. Video data implicitly introduces several challenges, such as blur, occlusion and defocus, making video object detection more challenging in comparison to still image object detection, which is performed on individual and independent images. This paper tackles these challenges by proposing an attention-heavy framework for video object detection that aggregates the disentangled features extracted from individual frames. The proposed framework is a two-stage object detector based on the Faster R-CNN architecture. The disentanglement head integrates scale, spatial and task-aware attention and applies it to the features extracted by the backbone network across all the frames. Subsequently, the aggregation head incorporates temporal attention and improves detection in the target frame by aggregating the features of the support frames. These include the features extracted from the disentanglement network along with the temporal features. We evaluate the proposed framework using the ImageNet VID dataset and achieve a mean Average Precision (mAP) of 49.8 and 52.5 using the backbones of ResNet-50 and ResNet-101, respectively. The improvement in performance over the individual baseline methods validates the efficacy of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call